论文标题

带有调节事件的无拓扑类型结构

Topology-Free Type Structures with Conditioning Events

论文作者

Guarino, Pierfrancesco

论文摘要

我们在没有任何拓扑假设的情况下建立了通用类型结构的存在,即通过执行Heifetz&Samet(1998)的结构,是终端,信念完全且非冗余的类型结构。通过这样做,我们对Battigalli&Siniscalchi(1999)的长期猜想做出了肯定的回答,该猜想是关于进行调节事件进行这种结构的可能性。特别是,我们通过利用类别理论和煤桥理论的论点来获得结果,因此,明确了强调大型互动结构的所有结构的数学结构,并将结构的信念完整作为这些领域的已知结果的直接推论。

We establish the existence of the universal type structure in presence of conditioning events without any topological assumption, namely, a type structure that is terminal, belief-complete, and non-redundant, by performing a construction à la Heifetz & Samet (1998). In doing so, we answer affirmatively to a longstanding conjecture made by Battigalli & Siniscalchi (1999) concerning the possibility of performing such a construction with conditioning events. In particular, we obtain the result by exploiting arguments from category theory and the theory of coalgebras, thus, making explicit the mathematical structure underlining all the constructions of large interactive structures and obtaining the belief-completeness of the structure as an immediate corollary of known results from these fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源