论文标题
边界轨道变性:一个新的概念,用于在有机半导体吸附剂中调整磁态
Frontier Orbital Degeneracy: A new Concept for Tailoring the Magnetic State in Organic Semiconductor Adsorbates
论文作者
论文摘要
分子吸附物中的近托共振是分子旋转型领域应用的重要组成部分。在这里,我们介绍了使用边界轨道变性来调整磁状态的新颖概念,这证明了有机半导体的情况1,4,5,8,9,11-己二乙烯基苯乙烯乙烯乙烯二甲甲苯甲甲基二硝基(HATCN,C18N12)在AG上(111)。低温扫描隧道显微镜/光谱(LT-STM/STS)测量结果揭示了存在两种类型的吸附的HATCN分子具有明显不同的外观和磁状态,这可以从存在或不存在Abrikosov-Suhl-kondo kondo谐振。我们的DFT结果表明,AG(111)上的HATCN支持两个几乎同工的状态,均从Ag表面转移了一个过量的电子,但磁矩为0或0.65 Ub。因此,即使所有分子都从Ag底物中均经过一个电子的电荷转移,但它们存在于两个不同的分子磁状态,类似于自由双重型或纠缠旋转状态。我们解释了这种行为的起源如何在于气相HATCN的最低未占用分子轨道的双重变性,在吸附和AG的电荷转移后取消了(111)。我们组合的STM和DFT研究引入了一种新的途径,以在表面上调整分子吸附物的磁态,并具有巨大的旋转基质和量子信息科学的潜力。
Kondo resonances in molecular adsorbates are an important building block for applications in the field of molecular spintronics. Here, we introduce the novel concept of using frontier orbital degeneracy for tailoring the magnetic state, which is demonstrated for the case of the organic semiconductor 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile (HATCN, C18N12) on Ag(111). Low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/STS) measurements reveal the existence of two types of adsorbed HATCN molecules with distinctly different appearances and magnetic states, as evident from the presence or absence of an Abrikosov-Suhl-Kondo resonance. Our DFT results show that HATCN on Ag(111) supports two almost isoenergetic states, both with one excess electron transferred from the Ag surface, but with magnetic moments of either 0 or 0.65 uB. Therefore, even though all molecules undergo charge transfer of one electron from the Ag substrate, they exist in two different molecular magnetic states that resemble a free doublet or an entangled spin state. We explain how the origin of this behavior lies in the twofold degeneracy of the lowest unoccupied molecular orbitals of gas phase HATCN, lifted upon adsorption and charge-transfer from Ag(111). Our combined STM and DFT study introduces a new pathway to tailoring the magnetic state of molecular adsorbates on surfaces, with significant potential for spintronics and quantum information science.