论文标题

偶极式流体的流体动力学

Hydrodynamics of dipole-conserving fluids

论文作者

Głódkowski, Aleksander, Peña-Benítez, Francisco, Surówka, Piotr

论文摘要

偶极式连接流体是可以根据对称性理解的运动学约束系统的示例。众所周知,它们显示出各种奇特的特征,包括玻璃样动力学,延伸性传输和被固定的激励称为平地。不幸的是,此类系统到目前为止已经逃脱了完整的宏观配方,作为粘性流体。在这项工作中,我们构建了在翻译,旋转和偶极转移对称性下不变的流体的一致的流体动力描述。我们使用对称原理在平衡处制定一种用于偶极式连接系统的热力学理论,并应用不可逆的热力学来阐明耗散效应。值得注意的是,我们发现能量保存的包含不仅使纵向模式扩散而不是宽度,而且扩散也存在于衍生物扩张中的最低顺序。这项工作为有效的多体系统铺平了道路,具有受限的动力学,例如拓扑缺陷的合奏,物质的分裂阶段和某些玻璃模型。

Dipole-conserving fluids serve as examples of kinematically constrained systems that can be understood on the basis of symmetry. They are known to display various exotic features including glassylike dynamics, subdiffusive transport, and immobile excitations dubbed fractons. Unfortunately, such systems have so far escaped a complete macroscopic formulation as viscous fluids. In this work, we construct a consistent hydrodynamic description for fluids invariant under translation, rotation, and dipole shift symmetry. We use symmetry principles to formulate a thermodynamic theory for dipole-conserving systems at equilibrium and apply irreversible thermodynamics in order to elucidate dissipative effects. Remarkably, we find that the inclusion of the energy conservation not only renders the longitudinal modes diffusive rather than subdiffusive but also diffusion is present even at the lowest order in the derivative expansion. This work paves the way towards an effective description of many-body systems with constrained dynamics such as ensembles of topological defects, fracton phases of matter, and certain models of glasses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源