论文标题
可扩展的动态混合模型,具有完整协方差的概率流量预测
Scalable Dynamic Mixture Model with Full Covariance for Probabilistic Traffic Forecasting
论文作者
论文摘要
基于深度学习的多元和多步骤的流量预测模型通常是通过平均平方误差(MSE)或平均绝对误差(MAE)作为序列到序列设置中的损耗函数的训练,只是假设这些错误遵循独立的和异端的高斯或拉普拉奇分布。但是,对于实际预测任务而言,这种假设通常是不现实的,因为时空预测的概率分布非常复杂,并且在两个传感器和预测范围内以时间变化的方式进行了较强的并发相关性。在本文中,我们将矩阵变化误差过程的时变分布建模为零均值高斯分布的动态混合物。为了达到效率,柔韧性和可扩展性,我们使用矩阵正态分布对每个混合物组件进行参数化,并允许混合物的重量变化并可以随着时间的推移而预测。所提出的方法可以无缝集成到现有的深度学习框架中,只有几个其他参数才能学习。我们在交通速度预测任务上评估了所提出的方法的性能,并发现我们的方法不仅可以改善模型性能,而且还提供了可解释的时空相关结构。
Deep learning-based multivariate and multistep-ahead traffic forecasting models are typically trained with the mean squared error (MSE) or mean absolute error (MAE) as the loss function in a sequence-to-sequence setting, simply assuming that the errors follow an independent and isotropic Gaussian or Laplacian distributions. However, such assumptions are often unrealistic for real-world traffic forecasting tasks, where the probabilistic distribution of spatiotemporal forecasting is very complex with strong concurrent correlations across both sensors and forecasting horizons in a time-varying manner. In this paper, we model the time-varying distribution for the matrix-variate error process as a dynamic mixture of zero-mean Gaussian distributions. To achieve efficiency, flexibility, and scalability, we parameterize each mixture component using a matrix normal distribution and allow the mixture weight to change and be predictable over time. The proposed method can be seamlessly integrated into existing deep-learning frameworks with only a few additional parameters to be learned. We evaluate the performance of the proposed method on a traffic speed forecasting task and find that our method not only improves model performance but also provides interpretable spatiotemporal correlation structures.