论文标题

混乱的翻新群体流量和熵梯度在Haros图上

Chaotic renormalization group flow and entropy gradients over Haros graphs

论文作者

Calero-Sanz, Jorge, Luque, Bartolo, Lacasa, Lucas

论文摘要

HAROS图最近作为一组图形与单位间隔中的实数有关。在这里,我们考虑了Haros图的集合运算符$ \ cal r $的迭代动力学。该操作员以前是在低维非线性动力学的图理论表征领域定义的,并具有重新归一化组(RG)结构。我们发现,Haros图上的$ \ cal r $的动力学很复杂,包括不稳定的周期性轨道或任意时期和非混合式上的大约轨道,总体肖像是混乱的RG流动。我们确定一个单一的RG稳定固定点,其吸引的盆地是一组有理数,将周期性的RG轨道与(纯)二次非理性和(纯)的RG轨道相关,并具有(非混合)族的(非混合)代数非代数非理性非理性和trascentaltental的(非混合)。最后,我们表明周期性RG轨道内的熵梯度是恒定的。我们讨论了这种混乱的RG流量的物理解释,并推测熵构周期轨道上的概念是对RG流量不变的集合中应用的(量子场理论)$ c $的(量子场理论)$ c $。

Haros graphs have been recently introduced as a set of graphs bijectively related to real numbers in the unit interval. Here we consider the iterated dynamics of a graph operator $\cal R$ over the set of Haros graphs. This operator was previously defined in the realm of graph-theoretical characterisation of low-dimensional nonlinear dynamics, and has a renormalization group (RG) structure. We find that the dynamics of $\cal R$ over Haros graphs is complex and includes unstable periodic orbits or arbitrary period and non-mixing aperiodic orbits, overall portraiting a chaotic RG flow. We identify a single RG stable fixed point whose basin of attraction is the set of rational numbers, associate periodic RG orbits with (pure) quadratic irrationals and aperiodic RG orbits with (non-mixing) families of non-quadratic algebraic irrationals and trascendental numbers. Finally, we show that the entropy gradients inside periodic RG orbits are constant. We discuss the possible physical interpretation of such chaotic RG flow and speculate on the entropy-constant periodic orbits as a possible confirmation of a (quantum field-theoretic) $c$-theorem applied inside the invariant set of a RG flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源