论文标题
部分可观测时空混沌系统的无模型预测
Numerical analysis for the Plateau problem by the method of fundamental solutions
论文作者
论文摘要
为了确定从边界几何形状共享相同边界的最小表面的数量,我们提出了一个具有高速和高精度的数值方案。我们的数值方案基于基本解决方案的方法。我们为Dirichlet Energy和$ L^\ Infty $ -Error分析建立了平均曲率分析的收敛分析。我们方案中的每个近似解决方案都是平滑的表面,这与先前需要网格分裂的研究是一个显着差异。
Towards identifying the number of minimal surfaces sharing the same boundary from the geometry of the boundary, we propose a numerical scheme with high speed and high accuracy. Our numerical scheme is based on the method of fundamental solutions. We establish the convergence analysis for Dirichlet energy and $L^\infty$-error analysis for mean curvature. Each of the approximate solutions in our scheme is a smooth surface, which is a significant difference from previous studies that required mesh division.