论文标题
等距浸入具有控制曲率的
Isometric Immersions with Controlled Curvatures
论文作者
论文摘要
我们$δ$ - riemannin歧管$ f_0:x^m \ to y^n $ for $ n >> m^2/2 $ by $ c^\ infty $ -smmooth ismote ismooth ismooth ismooth Inmions $f_δ 3}δ$,以$δ\至0 $
We $δ$-approximate strictly short (e.g. constant) maps between Riemannin manifolds $f_0:X^m\to Y^N$ for $N>>m^2/2$ by $C^\infty$-smooth isometric immersions $f_δ:X^m\to Y^N$ with curvatures $curv(f_δ) < \frac {\sqrt 3}δ$, for $δ\to 0$