论文标题
关于Sinkhorn算法的收敛速率
On the Convergence Rate of Sinkhorn's Algorithm
论文作者
论文摘要
我们研究了Sinkhorn的算法,用于解决熵正规化的最佳运输问题。它的迭代$π_{t} $显示满足$ h(π_{t} |π_ {*})+h(π_{*} |π_{t})= o(t^{ - 1})$ h $表示相对入口和$π_{*} $ cou(这适用于大量的成本功能和边际,包括次要边缘的二次成本。我们还获得了双次优率的费率$ o(t^{ - 1})$,边缘熵获得$ o(t^{ - 2})$。更确切地说,我们得出了非反应性界限,并且与以前的线性收敛结果相反,该结果仅限于有限成本,我们的估计值不会因正则化参数而呈指数级别。我们还获得了$π_ {*} $作为边际函数的稳定性结果,该函数在相对熵中量化。
We study Sinkhorn's algorithm for solving the entropically regularized optimal transport problem. Its iterate $π_{t}$ is shown to satisfy $H(π_{t}|π_{*})+H(π_{*}|π_{t})=O(t^{-1})$ where $H$ denotes relative entropy and $π_{*}$ the optimal coupling. This holds for a large class of cost functions and marginals, including quadratic cost with subgaussian marginals. We also obtain the rate $O(t^{-1})$ for the dual suboptimality and $O(t^{-2})$ for the marginal entropies. More precisely, we derive non-asymptotic bounds, and in contrast to previous results on linear convergence that are limited to bounded costs, our estimates do not deteriorate exponentially with the regularization parameter. We also obtain a stability result for $π_{*}$ as a function of the marginals, quantified in relative entropy.