论文标题
对数$ f(r,t)$宇宙学中的深色能量性质
Dark Energy Nature in Logarithmic $f(R,T)$ Cosmology
论文作者
论文摘要
本研究论文是对对数$ f(r,t)$ - 重力宇宙学的黑暗能量性质的调查。我们已经得出了函数$ f(r,t)= r-16πgα\ ln(t)$的修改后的爱因斯坦的场方程,其中$ r $是RICCI标量曲率,$ t $是应力能量动量张量的痕迹,$ $α$是模型参数。我们以两种流体场景的形式求解了场方程,作为完美的富流体和深色流体,其中深色流体项以完美的流体来源的形式得出。我们对宇宙学参数进行了观察约束,$ω_ {(m)},ω^{(de)} $和$ h_ {0} $使用$χ^{2} $测试,如SNE IA和$ H(Z)$的观测数据集,如观测数据集。通过这些约束,我们已经使用减速参数$ q $,能量参数$ω_ {(m)},ω_ {(de)} $,EOS参数$ω^{(de)} $等讨论了我们的模型。另外,我们也完成了OM诊断分析。派生的$ f(r,t)$模型显示了一个典型的暗能量模型$ω^{(de)}> - 1 $,而延迟时间宇宙接近$λ$ CDM模型。
The present research paper is an investigation of dark energy nature of logarithmic $f(R, T)$-gravity cosmology in a flat FLRW space-time universe. We have derived modified Einstein's field equations for the function $f(R, T)=R-16πGα\ln(T)$ where $R$ is the Ricci scalar curvature, $T$ is the trace of the stress energy momentum tensor and $α$ is a model parameter. We have solved field equations in the form of two fluid scenario as perfect-fluid and dark-fluid, where dark fluid term is derived in the form of perfect fluid source. We have made an observational constraints on the cosmological parameters $Ω_{(m)}, ω^{(de)}$ and $H_{0}$ using $χ^{2}$ test with observational datasets like Pantheon sample of SNe Ia and $H(z)$. With these constraints we have discussed our model with deceleration parameter $q$, energy parameters $Ω_{(m)}, Ω_{(de)}$, EoS parameter $ω^{(de)}$ etc. Also, we have done Om diagnostic analysis. The derived $f(R, T)$ model shows a quintessence dark energy model $ω^{(de)}>-1$ and late-time universe approaches to $Λ$CDM model.