论文标题
加利福尼亚中央山谷中使用干涉综合孔径雷达的地质组成的远程估计
Remote estimation of geologic composition using interferometric synthetic-aperture radar in California's Central Valley
论文作者
论文摘要
加利福尼亚州的中央山谷是国家农业中心,生产1/4的食品。但是,由于继续抽水,中央山谷的土地以速度迅速下降(每年高达20厘米)。土地沉降对基础设施的弹性和地下水的可持续性有重大影响。在这项研究中,我们旨在确定具有不同时间动态的特定区域,并找到与潜在地质组成的关系。然后,我们旨在使用干涉合成孔径雷达(INSAR)使用机器学习技术远程估计地质组成。我们确定了具有不同土地位移时间特征的区域,其中某些区域(例如,舵)具有更粗的地质成分,具有潜在的可逆土地变形(弹性土地压实)。我们发现,使用随机森林和深层神经网络回归模型,基于INS的土地变形与地质组成之间存在显着相关性。我们还通过1/4稀疏采样实现了显着的准确性,以减少数据之间的任何空间相关性,这表明该模型有可能将其推广到其他区域,以进行间接的地质组成估计。我们的结果表明,可以使用基于内在的土地变形数据来估算地质成分。地质成分的原位测量可能是昂贵且耗时的,在某些地区可能是不切实际的。该模型的普遍性阐明了利用现有测量值的高空间分辨率地质组成估计。
California's Central Valley is the national agricultural center, producing 1/4 of the nation's food. However, land in the Central Valley is sinking at a rapid rate (as much as 20 cm per year) due to continued groundwater pumping. Land subsidence has a significant impact on infrastructure resilience and groundwater sustainability. In this study, we aim to identify specific regions with different temporal dynamics of land displacement and find relationships with underlying geological composition. Then, we aim to remotely estimate geologic composition using interferometric synthetic aperture radar (InSAR)-based land deformation temporal changes using machine learning techniques. We identified regions with different temporal characteristics of land displacement in that some areas (e.g., Helm) with coarser grain geologic compositions exhibited potentially reversible land deformation (elastic land compaction). We found a significant correlation between InSAR-based land deformation and geologic composition using random forest and deep neural network regression models. We also achieved significant accuracy with 1/4 sparse sampling to reduce any spatial correlations among data, suggesting that the model has the potential to be generalized to other regions for indirect estimation of geologic composition. Our results indicate that geologic composition can be estimated using InSAR-based land deformation data. In-situ measurements of geologic composition can be expensive and time consuming and may be impractical in some areas. The generalizability of the model sheds light on high spatial resolution geologic composition estimation utilizing existing measurements.