论文标题

计算加速实验材料表征 - 从高通量模拟工作流中汲取灵感

Computationally accelerated experimental materials characterization -- drawing inspiration from high-throughput simulation workflows

论文作者

Stricker, Markus, Banko, Lars, Sarazin, Nik, Siemer, Niklas, Janssen, Jan, Zhang, Lei, Neugebauer, Jörg, Ludwig, Alfred

论文摘要

计算材料科学越来越多地从数据管理,自动化和基于算法的决策中受益,以模拟材料属性和行为。实验材料科学也通过将“机器学习”纳入材料发现活动中迅速变化。但是,在实验域中,并未广泛使用,这些好处包括自动化,可重复性,数据出处以及托管数据的可重复使用性。我们介绍了一个主动学习环的实现,该循环与直接接口与催眠中的实验测量设备的直接接口,这是一个专为高通量模拟的框架,作为演示者如何将实验性和模拟数据组合到一个框架中。除了主动学习方法提供的加速度外,通过使用密度函数理论模拟的先验知识以及使用单词嵌入中的相关性来实现实验表征的额外加速度,以及来自文献挖掘的组成 - 特质预测。借助来自同一框架中所有域的数据,迄今尚未开发且急需的潜力来加速材料表征和材料发现活动。

Computational materials science increasingly benefits from data management, automation, and algorithm-based decision-making for the simulation of material properties and behavior. Experimental materials science also changes rapidly by incorporation of `machine learning' in materials discovery campaigns. The obvious benefits which include automation, reproducibility, data provenance, and reusability of managed data, however, is not widely available in the experimental domain. We present an implementation of a Active Learning loop with a direct interface to an experimental measurement device in pyiron, a framework designed for high-throughput simulations, as demonstrator how to combine experimental and simulated data in one framework. Apart from the acceleration provided by the active learning approach, additional acceleration of the experimental characterization is achieved by using prior knowledge from density functional theory simulations as well as composition-property predictions from literature mining using correlations in word embeddings. With data from all domains in the same framework, a heretofore untapped and much-needed potential for the acceleration of materials characterization and materials discovery campaigns becomes available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源