论文标题
使用机械模型在体外和体内成像数据中识别驱动三重阴性乳腺癌患者对新辅助化疗的早期反应的机制
Identifying mechanisms driving the early response of triple negative breast cancer patients to neoadjuvant chemotherapy using a mechanistic model integrating in vitro and in vivo imaging data
论文作者
论文摘要
新辅助化疗(NAC)是手术前治疗局部晚期三重阴性乳腺癌(TNBC)的护理标准治疗方法。对TNBC对NAC的反应的早期评估将使肿瘤学家能够适应非反应患者的治疗计划,从而改善治疗结果,同时预防不必要的毒性。为此,一种有希望的方法包括获得\ textsl {在硅}中,对NAC \ textsl {via}的肿瘤响应的个性化预测,对NAC期间在NAC期间早期获得的机械模型的计算机模拟对机械模型的计算机仿真进行了限制。在这里,我们提出了一个模型,该模型具有TNBC增长和对NAC反应的基本机制,包括对药物医学动力学和药代动力学的明确描述。由于用于模型校准的纵向\ textsl {in Vivo} MRI数据受到限制,因此我们执行灵敏度分析以识别推动对两种NAC药物组合反应的模型机制:用环磷酰胺和碳纤维蛋白的paclitaxel。模型参数空间是通过结合基于患者特异性MRI的\ textsl {in Silico}参数估计的,并使用使用几个TNBC线的时间分解显微镜测定法获得的药效参数的\ textIt {Intter {Intter {intter {Inter {Intter {intter {Intter {intter {intter}。灵敏度分析在两个基于MRI的场景中进行,对应于饱腹性肿瘤良好的肿瘤。在本文考虑的15个参数中,只有基线肿瘤细胞净增殖率以及阿霉素,卡泊肽和紫杉醇的最大浓度和影响对模型预测(总效应指数,$ s_t> $ 0.1)都有相关的影响。这些结果极大地限制了需要\ textsl {in Vivo} MRI约束校准的参数数量,从而促进了我们模型的临床应用。
Neoadjuvant chemotherapy (NAC) is a standard-of-care treatment for locally advanced triple negative breast cancer (TNBC) before surgery. The early assessment of TNBC response to NAC would enable an oncologist to adapt the therapeutic plan of a non-responding patient, thereby improving treatment outcomes while preventing unnecessary toxicities. To this end, a promising approach consists of obtaining \textsl{in silico} personalized forecasts of tumor response to NAC \textsl{via} computer simulation of mechanistic models constrained with patient-specific magnetic resonance imaging (MRI) data acquired early during NAC. Here, we present a model featuring the essential mechanisms of TNBC growth and response to NAC, including an explicit description of drug pharmacodynamics and pharmacokinetics. As longitudinal \textsl{in vivo} MRI data for model calibration is limited, we perform a sensitivity analysis to identify the model mechanisms driving the response to two NAC drug combinations: doxorubicin with cyclophosphamide, and paclitaxel with carboplatin. The model parameter space is constructed by combining patient-specific MRI-based \textsl{in silico} parameter estimates and \textit{in vitro} measurements of pharmacodynamic parameters obtained using time-resolved microscopy assays of several TNBC lines. The sensitivity analysis is run in two MRI-based scenarios corresponding to a well-perfused and a poorly-perfused tumor. Out of the 15 parameters considered herein, only the baseline tumor cell net proliferation rate along with the maximum concentrations and effects of doxorubicin, carboplatin, and paclitaxel exhibit a relevant impact on model forecasts (total effect index, $S_T>$0.1). These results dramatically limit the number of parameters that require \textsl{in vivo} MRI-constrained calibration, thereby facilitating the clinical application of our model.