论文标题

嘈杂的杂种量子电路中的通用KPZ缩放

Universal KPZ scaling in noisy hybrid quantum circuits

论文作者

Liu, Shuo, Li, Ming-Rui, Zhang, Shi-Xin, Jian, Shao-Kai, Yao, Hong

论文摘要

由于纠缠结构的丰富现象及其与量子信息处理的关系,测量引起的相变(MIPT)引起了越来越多的关注。由于物理系统不可避免地与环境结合在一起,因此在分析MIPT的系统时需要考虑量子噪声,该系统可能会定性地修改甚至破坏系统的某些纠缠结构。在这封信中,我们调查了由重置量子通道在每个站点上作用的量子噪声的效果。基于Clifford电路的数值结果,我们表明量子噪声可以在定性上改变纠缠属性 - 纠缠符号``区域定律'',而不是``卷量''',而不是``卷法律''。在量子噪声引起的``区域定律''阶段中,纠缠表现出一种新颖的$ q^{ - 1/3} $ powerlaw缩放。使用将量子模型的分析映射到经典的统计模型,我们进一步表明,``区域''纠缠是噪声驱动的对称性领域的结果,而$ q^{ - 1/3} $缩放可以理解为Kardar-Paris-Paris-Parisi-Zhang(Kpz)directect of Direct of Directect of Direct and artectect and direct and direct and direct的结果。 $ l _ {\ rm {eff}} \ sim q^{ - 1} $在随机环境中。

Measurement-induced phase transitions (MIPT) have attracted increasing attention due to the rich phenomenology of entanglement structures and their relation with quantum information processing. Since physical systems are unavoidably coupled to environment, quantum noise needs be considered in analyzing a system with MIPT, which may qualitatively modify or even destroy certain entanglement structure of the system. In this Letter, we investigate the effect of quantum noise modeled by reset quantum channel acting on each site with probability $q$ on MIPT. Based on the numerical results from the Clifford circuits, we show that the quantum noise can qualitatively change the entanglement properties - the entanglement obeys ``area law'' instead of ``volume law'' with projective measurement rate $p<p_{c}$. In the quantum noise induced ``area law'' phase, the entanglement exhibits a novel $q^{-1/3}$ power-law scaling. Using an analytic mapping of the quantum model to a classical statistical model, we further show that the ``area law'' entanglement is the consequence of the noise-driven symmetry-breaking field and the $q^{-1/3}$ scaling can be understood as the result of Kardar-Parisi-Zhang (KPZ) fluctuations of the directed polymer with an effective length scale $L_{\rm{eff}} \sim q^{-1}$ in a random environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源