论文标题
扩展的Lipkin-Meshkov-Glick模型中的FOTOC复杂性
FOTOC complexity in an extended Lipkin-Meshkov-Glick model
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study fidelity out-of-time-order correlators (FOTOCs) in an extended Lipkin-Meshkov-Glick model and demonstrate that these exhibit distinctive behaviour at quantum phase transitions in both the ground and the excited states. We show that the dynamics of the FOTOC have different behaviour in the symmetric and broken-symmetry phases, and as one approaches phase transition. If we rescale the FOTOC operator with time, then for small times, we establish that it is identical to the Loschmidt echo. We also compute the Nielsen complexity of the FOTOC operator in both phases, and apply this operator on the ground and excited states to obtain the quasi-scrambled state of the model. The FOTOC operator introduces a small perturbation on the original ground and excited states. For this perturbed state, we compute the quantum information metric to first order in perturbation, in the thermodynamic limit. We find that the associated Ricci scalar diverges at the phase transition on the broken-symmetry phase side, in contrast to the zeroth order result. Finally, we comment upon the Fubini-Study complexity in this model.