论文标题
从简单版本的Deligne Axioms构造交叉点的构造
A construction of intersection cohomology from a simplicial version of the Deligne axioms
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Intersection cohomology is a way to enhance classical cohomology, allowing us to use a famous result called Poincaré duality on a large class of spaces known as stratified pseudomanifolds. There is a theoretically powerful way to arrive at intersection cohomology by classifying sheaves that satisfy what are called Deligne axioms. We stablish an abstract manifestation of the Deligne axioms, to then apply it on a simplicial complex environment, for a category of simplicial sheaves inspired on the works of D. Chataur, D. Tanré and M. Saralegi-Araguren. For a stablished topology on a triangulation of a stratified pseudomanifold, we find a family of sheaves satisfying the simplicial Deligne axioms, giving us a way to construct intersection cohomology from simplicial sheaves.