论文标题

多层切片的紧密铃铛不平等

Tight Bell inequalities from polytope slices

论文作者

Jesus, José, Cruzeiro, Emmanuel Zambrini

论文摘要

对于各种情况,我们得出了新的紧密双分钟不平等。双方钟场景$(x,y,a,b)$由每个聚会的设置和成果数量,$ x $,$ a $ a $和$ y $,$ y $,$ b $,爱丽丝和鲍勃。我们得出了$(6,3,2,2)$,$(3,3,3,2)$,$(3,2,3,3)$和$(2,2,3,5)$的本地多型$(6,3,2,2)$(6,3,2,2)的完整面。我们提供了$(2,2,4,4)$,$(3,3,4,2)$和$(4,3,3,2)$的$(2,2,4,4)$(4,3,3,2)$的广泛面积清单。对于每个不平等,我们计算关闭检测漏洞所需的最大量子违规,对噪声的阻力以及最小的对称检测效率,用于Qutrits,Qutrits和Quarts。基于这些结果,我们确定与CHSH相比,在可见性,对噪声的抵抗力或两者兼而有之的方案。这种情况可以在量子通信中找到重要的应用。

We derive new tight bipartite Bell inequalities for various scenarios. A bipartite Bell scenario $(X,Y,A,B)$ is defined by the numbers of settings and outcomes per party, $X$, $A$ and $Y$, $B$ for Alice and Bob, respectively. We derive the complete set of facets of the local polytopes of $(6,3,2,2)$, $(3,3,3,2)$, $(3,2,3,3)$, and $(2,2,3,5)$. We provide extensive lists of facets for $(2,2,4,4)$, $(3,3,4,2)$ and $(4,3,3,2)$. For each inequality we compute the maximum quantum violation, the resistance to noise, and the minimal symmetric detection efficiency required to close the detection loophole, for qubits, qutrits and ququarts. Based on these results, we identify scenarios which perform better in terms of visibility, resistance to noise, or both, when compared to CHSH. Such scenarios could find important applications in quantum communication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源