论文标题
拉格朗日坐标中的二维磁性动力学方程的群体分类
Group classification of the two-dimensional magnetogasdynamics equations in Lagrangian coordinates
论文作者
论文摘要
本文致力于磁性方程的组分类,其中欧拉坐标中的相关变量取决于时间和两个空间坐标。假定连续体是无粘性的,并且具有无限的电导率的非热性气体。这些方程式在质量拉格朗日坐标中考虑。 Lagrangian坐标的使用允许减少因变量的数量。本文提供的分析给出了研究方程式的完整小组分类。该分析对于在Noether定理基础上构建不变解决方案和保护法是必要的。
The present paper is devoted to the group classification of magnetogasdynamics equations in which dependent variables in Euler coordinates depend on time and two spatial coordinates. It is assumed that the continuum is inviscid and nonthermal polytropic gas with infinite electrical conductivity. The equations are considered in mass Lagrangian coordinates. Use of Lagrangian coordinates allows reducing number of dependent variables. The analysis presented in this article gives complete group classification of the studied equations. This analysis is necessary for constructing invariant solutions and conservation laws on the base of Noether's theorem.