论文标题

诱导的子图和树分解VII。 $ h $ free图中的基本障碍物

Induced subgraphs and tree-decompositions VII. Basic obstructions in $H$-free graphs

论文作者

Abrishami, Tara, Alecu, Bogdan, Chudnovsky, Maria, Hajebi, Sepehr, Spirkl, Sophie

论文摘要

我们说,如果每个正整数$ t $都存在一个正整数$ w(t)$,则图形的$ \ mathcal {c} $是干净$ k_ {t,t,t} $,$(t \ times t)$ - 墙的一个细分或$(t \ times t)$ - 壁的细分的线图。在本文中,我们根据Lozin和Razgon(以Weißauer的早期想法为基础)调整了一种方法,以证明所有$ h $ free Graphs的类(也就是说,没有诱导子构象的图形$ h $的图形$ h $)是干净的,只有$ h $是$ h $的森林,其组成的森林是一个森林,其组成部分是subdiveling star dibdived stars subdivelister star dibdived star的。 它们的方法很容易应用以产生上述特征。但是,我们的主要结果要强得多:对于上述每个森林$ h $,我们表明,将包含$ h $的某些连接图作为诱导子图(而不是$ h $本身)足以获得干净的图表。沿着后者的加强证明,我们以戴维斯(Davies)和农产品的结果为基础,对于每个正整数$η$,对不可避免的连接的诱导诱导子图的完整描述,该图$ g $含有$η$ pertices,来自$ g $中的一组适合的给定的顶点。这具有独立的兴趣,将用于本系列的后续论文。

We say a class $\mathcal{C}$ of graphs is clean if for every positive integer $t$ there exists a positive integer $w(t)$ such that every graph in $\mathcal{C}$ with treewidth more than $w(t)$ contains an induced subgraph isomorphic to one of the following: the complete graph $K_t$, the complete bipartite graph $K_{t,t}$, a subdivision of the $(t\times t)$-wall or the line graph of a subdivision of the $(t \times t)$-wall. In this paper, we adapt a method due to Lozin and Razgon (building on earlier ideas of Weißauer) to prove that the class of all $H$-free graphs (that is, graphs with no induced subgraph isomorphic to a fixed graph $H$) is clean if and only if $H$ is a forest whose components are subdivided stars. Their method is readily applied to yield the above characterization. However, our main result is much stronger: for every forest $H$ as above, we show that forbidding certain connected graphs containing $H$ as an induced subgraph (rather than $H$ itself) is enough to obtain a clean class of graphs. Along the proof of the latter strengthening, we build on a result of Davies and produce, for every positive integer $η$, a complete description of unavoidable connected induced subgraphs of a connected graph $G$ containing $η$ vertices from a suitably large given set of vertices in $G$. This is of independent interest, and will be used in subsequent papers in this series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源