论文标题

理想和浅水磁流体动力学的新的新的无局部无差异路线保守中心风格方案

A New Locally Divergence-Free Path-Conservative Central-Upwind Scheme for Ideal and Shallow Water Magnetohydrodynamics

论文作者

Chertock, Alina, Kurganov, Alexander, Redle, Michael, Wu, Kailiang

论文摘要

我们为理想和浅水磁流失动力学(MHD)方程开发了一种新的二阶未加速的路径保守中心风(PCCU)方案。新方案具有多种重要属性:它在局部保留了无差的约束,它不依赖任何(近似)Riemann问题解决方案,并且可以稳健地产生高分辨率和非振荡结果。该方案的推导基于研究的MHD系统的Godunov-Powell非保守修改。通过使用具有磁场成分相应衍生物的进化方程来增强修饰系统的实现,无局部的无差异性能。然后,这些衍生物用于设计磁场的特殊分段线性重建,该线性重建保证了所得方案的非振荡性质。此外,提出的PCCU离散化解释了跨单元界面的非保守产品项的跳跃,从而确保了稳定性。我们在理想和浅水MHD系统的几个基准上测试了建议的PCCU方案。获得的数值结果说明了新方案的性能,其鲁棒性及其不仅可以实现高分辨率的能力,还可以保留计算量的阳性,例如密度,压力和水深度。

We develop a new second-order unstaggered path-conservative central-upwind (PCCU) scheme for ideal and shallow water magnetohydrodynamics (MHD) equations. The new scheme possesses several important properties: it locally preserves the divergence-free constraint, it does not rely on any (approximate) Riemann problem solver, and it robustly produces high-resolution and non-oscillatory results. The derivation of the scheme is based on the Godunov-Powell nonconservative modifications of the studied MHD systems. The local divergence-free property is enforced by augmenting the modified systems with the evolution equations for the corresponding derivatives of the magnetic field components. These derivatives are then used to design a special piecewise linear reconstruction of the magnetic field, which guarantees a non-oscillatory nature of the resulting scheme. In addition, the proposed PCCU discretization accounts for the jump of the nonconservative product terms across cell interfaces, thereby ensuring stability. We test the proposed PCCU scheme on several benchmarks for both ideal and shallow water MHD systems. The obtained numerical results illustrate the performance of the new scheme, its robustness, and its ability not only to achieve high resolution, but also preserve the positivity of computed quantities such as density, pressure, and water depth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源