论文标题

图形步行自动机的空虚问题和带有星形子图的瓷砖的复杂性

Complexity of the emptiness problem for graph-walking automata and for tilings with star subgraphs

论文作者

Martynova, Olga

论文摘要

本文证明了两个识别图形的模型的空虚问题的可决定性:图形步行自动机和Star Subgraphs(Star Automata)的图形瓷砖。此外,事实证明,图形步行自动机的非空性问题(也就是说,给定的自动机是否至少接受一个图)是NEXP complete。对于将非确定树自动机推广到图形的Star Automata而言,证明其非空性问题是NP完整的。

This paper proves the decidability of the emptiness problem for two models which recognize graphs: graph-walking automata, and tilings of graphs by star subgraphs (star automata). Furthermore, it is proved that the non-emptiness problem for graph-walking automata (that is, whether a given automaton accepts at least one graph) is NEXP-complete. For star automata, which generalize nondeterministic tree automata to the case of graphs, it is proved that their non-emptiness problem is NP-complete.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源