论文标题
使用深度学习设计的材料进行单向成像
Unidirectional Imaging using Deep Learning-Designed Materials
论文作者
论文摘要
单向成像仪仅允许从一个方向形成图像,从输入视野(FOV)A到输出FOV B,在反向路径中,将阻止图像形成。在这里,我们报告了单向成像仪的首次演示,该展示基于线性和各向同性的连续衍射层提供了极敏感和宽带单向成像。这些衍射层是使用深度学习优化的,并由数十万个衍射相特征组成,这些特征共同调节了传入场并将输入的强度图像投射到输出FOV上,同时阻止了反向方向的图像形成。在基于深度学习的训练之后,制造出所得的衍射层以形成单向成像仪。作为互惠设备,衍射单向成像仪在向前和向后方向具有不对称模式处理能力,其中从B到A的光学模式有选择性地引导/分散以错过输出FOV,而对于远期方向而言,这种模态损失被最小化,从而获得了一个理想的成像系统,从而产生了一个理想的成像系统和输出模构和输出率之间。尽管使用单色照明进行了训练,但衍射单向成像仪仍在大光谱带上保持其功能,并在宽带照明下工作。我们使用Terahertz辐射在实验中验证了该单向成像仪,与我们的数值结果非常匹配。使用相同的基于深度学习的设计策略,我们还创建了一个波长选择性的单向成像仪,其中两个单向成像操作以相反的方向通过不同的照明波长进行了多路复用。使用结构化材料的衍射单向成像将在例如安全,防御,电信和隐私保护方面具有许多应用。
A unidirectional imager would only permit image formation along one direction, from an input field-of-view (FOV) A to an output FOV B, and in the reverse path, the image formation would be blocked. Here, we report the first demonstration of unidirectional imagers, presenting polarization-insensitive and broadband unidirectional imaging based on successive diffractive layers that are linear and isotropic. These diffractive layers are optimized using deep learning and consist of hundreds of thousands of diffractive phase features, which collectively modulate the incoming fields and project an intensity image of the input onto an output FOV, while blocking the image formation in the reverse direction. After their deep learning-based training, the resulting diffractive layers are fabricated to form a unidirectional imager. As a reciprocal device, the diffractive unidirectional imager has asymmetric mode processing capabilities in the forward and backward directions, where the optical modes from B to A are selectively guided/scattered to miss the output FOV, whereas for the forward direction such modal losses are minimized, yielding an ideal imaging system between the input and output FOVs. Although trained using monochromatic illumination, the diffractive unidirectional imager maintains its functionality over a large spectral band and works under broadband illumination. We experimentally validated this unidirectional imager using terahertz radiation, very well matching our numerical results. Using the same deep learning-based design strategy, we also created a wavelength-selective unidirectional imager, where two unidirectional imaging operations, in reverse directions, are multiplexed through different illumination wavelengths. Diffractive unidirectional imaging using structured materials will have numerous applications in e.g., security, defense, telecommunications and privacy protection.