论文标题

一个代数量子字段理论方法,用于带边界的复曲面代码

An algebraic quantum field theoretic approach to toric code with gapped boundary

论文作者

Wallick, Daniel

论文摘要

拓扑上有序的量子自旋系统已成为一个引起人们关注的领域,因为它们可能会提供容忍量子计算的方法。这种旋转系统的最简单示例之一是基塔耶夫的复式代码。 Naaijkens使用代数量子场理论使用操作员代数方法在数学上严格地对无限平面晶格(热力学极限)的复曲面处理进行了严格处理。我们适应他的方法来研究带有差异边界的复曲面代码案例。特别是,我们恢复了Kitaev和Kong中描述的冷凝结果,并表明边界理论是整体上的模块张量类别。

Topologically ordered quantum spin systems have become an area of great interest, as they may provide a fault-tolerant means of quantum computation. One of the simplest examples of such a spin system is Kitaev's toric code. Naaijkens made mathematically rigorous the treatment of toric code on an infinite planar lattice (the thermodynamic limit), using an operator algebraic approach via algebraic quantum field theory. We adapt his methods to study the case of toric code with gapped boundary. In particular, we recover the condensation results described in Kitaev and Kong and show that the boundary theory is a module tensor category over the bulk, as expected.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源