论文标题
部分可观测时空混沌系统的无模型预测
Winning the CityLearn Challenge: Adaptive Optimization with Evolutionary Search under Trajectory-based Guidance
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Modern power systems will have to face difficult challenges in the years to come: frequent blackouts in urban areas caused by high power demand peaks, grid instability exacerbated by intermittent renewable generation, and global climate change amplified by rising carbon emissions. While current practices are growingly inadequate, the path to widespread adoption of artificial intelligence (AI) methods is hindered by missing aspects of trustworthiness. The CityLearn Challenge is an exemplary opportunity for researchers from multiple disciplines to investigate the potential of AI to tackle these pressing issues in the energy domain, collectively modeled as a reinforcement learning (RL) task. Multiple real-world challenges faced by contemporary RL techniques are embodied in the problem formulation. In this paper, we present a novel method using the solution function of optimization as policies to compute actions for sequential decision-making, while notably adapting the parameters of the optimization model from online observations. Algorithmically, this is achieved by an evolutionary algorithm under a novel trajectory-based guidance scheme. Formally, the global convergence property is established. Our agent ranked first in the latest 2021 CityLearn Challenge, being able to achieve superior performance in almost all metrics while maintaining some key aspects of interpretability.