论文标题

本地完整交叉点的最小指数和$ k $ - 理性

The minimal exponent and $k$-rationality for local complete intersections

论文作者

Chen, Qianyu, Dirks, Bradley, Mustaţă, Mircea

论文摘要

我们表明,如果$ z $是光滑复杂品种$ x $的本地完整交点子,则纯codimension $ r $,那么$ z $具有$ k $ - 理性的奇异性,并且仅当$ \widetildeα(z)> k+r $,$ \ \ \ \widetildeα(z)$是$ z $的最小值。我们还根据$ z $的交叉路口共同体霍奇模块的Hodge过滤来表征这种情况。此外,我们表明,如果$ z $具有$ k $ - 合理的奇异性,那么对本地协同学的hodge过滤$ \ mathcal {h}^r_z(\ nathcal {o} _x _x _x)$是在级别上生成的,以$ \ dim(x) - \ lceil \ wideteLdel $ kel $ \ z)生成1 $和$ z $是奇异的,尺寸$ d $,$ \ mathcal {h}^k(\undeslineΩ_z^{d-k} {d-k})\ neq 0 $。所有这些结果都以光滑品种中的超曲面而闻名。

We show that if $Z$ is a local complete intersection subvariety of a smooth complex variety $X$, of pure codimension $r$, then $Z$ has $k$-rational singularities if and only if $\widetildeα(Z)>k+r$, where $\widetildeα(Z)$ is the minimal exponent of $Z$. We also characterize this condition in terms of the Hodge filtration on the intersection cohomology Hodge module of $Z$. Furthermore, we show that if $Z$ has $k$-rational singularities, then the Hodge filtration on the local cohomology sheaf $\mathcal{H}^r_Z(\mathcal{O}_X)$ is generated at level $\dim(X)-\lceil \widetildeα(Z)\rceil-1$ and, assuming that $k\geq 1$ and $Z$ is singular, of dimension $d$, that $\mathcal{H}^k(\underlineΩ_Z^{d-k})\neq 0$. All these results have been known for hypersurfaces in smooth varieties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源