论文标题

光谱不变的局部到全球不平等现象和用于浮子轨迹的能量二分法

A local-to-global inequality for spectral invariants and an energy dichotomy for Floer trajectories

论文作者

Buhovsky, Lev, Tanny, Shira

论文摘要

我们研究了哈密顿人的频谱不平等的局部到全球不平等,他们的支持在半阳性的符号歧管上具有``足够大的''管状社区。特别是,我们介绍了这种不平等的例子,当时,当哈密顿人不一定会在与现代的接触范围内进行过这种不平等现象,或者在范围内不一定支持这种情况。光谱不变的一个主要新工具是在西科拉夫的精神上的下限,用于越过管状邻域的浮雕轨迹的能量。

We study a local-to-global inequality for spectral invariants of Hamiltonians whose supports have a ``large enough" tubular neighborhood on semipositive symplectic manifolds. In particular, we present the first examples of such an inequality when the Hamiltonians are not necessarily supported in domains with contact type boundaries, or when the ambient manifold is irrational. This extends a series of previous works studying locality phenomena of spectral invariants. A main new tool is a lower bound, in the spirit of Sikorav, for the energy of Floer trajectories that cross the tubular neighborhood against the direction of the negative-gradient vector field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源