论文标题

长嵌入式和BCR图的旋转的共生,具有多个循环

Cocycles of the space of long embeddings and BCR graphs with more than one loop

论文作者

Yoshioka, Leo

论文摘要

本文的目的是构建空格的非平凡共生(\ mathbb {r}^j,\ mathbb {r}^{n})$的长嵌入。我们通过在配置空间上进行积分构建Cocycles,与具有多个循环的Bott-Cattaneo-Rossi图相关联。作为一个申请,我们明确地给出了一个非平凡的零件嵌入,用于奇数$ n,j $,带有$ n-j \ geq 2 $和$ j \ geq 3 $。该家族(循环)是根据有向线的和弦图构建的。非平凡性通过共生周期削皮显示,通过图表和和弦图之间的削皮描述。

The purpose of this paper is to construct non-trivial cocycles of the space $Emb(\mathbb{R}^j, \mathbb{R}^{n})$ of long embeddings. We construct the cocycles by integral over configuration spaces, associated with Bott-Cattaneo-Rossi graphs with more than one loop. As an application, we give explicitly a non-trivial family of trivial long embeddings for odd $n,j$ with $n-j \geq 2$ and $j \geq 3$. This family (cycle) is constructed from a chord diagram on directed lines. The non-triviality is shown by cocycle-cycle paring, described by paring between graphs and chord diagrams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源