论文标题

稀疏随机矩阵的特征值光谱特性遵守戴尔定律

Eigenvalue spectral properties of sparse random matrices obeying Dale's law

论文作者

Harris, Isabelle D, Meffin, Hamish, Burkitt, Anthony N, Peterson, Andre D. H

论文摘要

本文通过检查特征值光谱分布来研究稀疏的随机网络体系结构与神经网络稳定性之间的关系。具体而言,我们将经典的特征性结果推广到遵守戴尔定律的稀疏连通性矩阵:神经元起兴奋性(E)或抑制性(i)的作用。通过将稀疏性定义为中子连接到另一个中子的概率,我们给出了明确的公式,该公式显示了在平衡和不平衡病例中,稀疏性如何与E/I人群统计数据相互作用,以扩展特征性特征的关键特征。我们的结果表明,特征性离群值是通过稀疏性线性缩放的,但是特征性半径和密度现在取决于稀疏性,E/I种群均值和方差之间的非线性相互作用。与以前的结果相反,我们证明,如果E/I人群统计数据中的任何一个不同,而不仅仅是E/I人群差异,则会产生不均匀的特征密度。我们还发现,出现了“局部”特征值,以遵守戴尔定律的稀疏随机矩阵,并证明这些特征值可以通过对平衡案例的修改零行和限制来控制,但是它们持续存在于不平衡的情况下。我们检查了所有级别的连接(稀疏性)和分布的E/I人群权重,以描述一般的稀疏连通性结构,这些结构将所有先前的结果统一为我们框架的特殊情况。稀疏性和戴尔定律都是生物神经网络的基本解剖学特性。我们概括了它们对随机神经网络的特征性的综合影响,从而深入了解网络稳定性,状态过渡和结构 - 功能关系。

This paper examines the relationship between sparse random network architectures and neural network stability by examining the eigenvalue spectral distribution. Specifically, we generalise classical eigenspectral results to sparse connectivity matrices obeying Dale's law: neurons function as either excitatory (E) or inhibitory (I). By defining sparsity as the probability that a neutron is connected to another neutron, we give explicit formulae that shows how sparsity interacts with the E/I population statistics to scale key features of the eigenspectrum, in both the balanced and unbalanced cases. Our results show that the eigenspectral outlier is linearly scaled by sparsity, but the eigenspectral radius and density now depend on a nonlinear interaction between sparsity, the E/I population means and variances. Contrary to previous results, we demonstrate that a non-uniform eigenspectral density results if any of the E/I population statistics differ, not just the E/I population variances. We also find that 'local' eigenvalue-outliers are present for sparse random matrices obeying Dale's law, and demonstrate that these eigenvalues can be controlled by a modified zero row-sum constraint for the balanced case, however, they persist in the unbalanced case. We examine all levels of connection (sparsity), and distributed E/I population weights, to describe a general class of sparse connectivity structures which unifies all the previous results as special cases of our framework. Sparsity and Dale's law are both fundamental anatomical properties of biological neural networks. We generalise their combined effects on the eigenspectrum of random neural networks, thereby gaining insight into network stability, state transitions and the structure-function relationship.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源