论文标题

$ \ mathbb {p}^3(\ mathbb {c})$的唯一奇异性均具有不变平面

Unique ergodicity for singular holomorphic foliations of $\mathbb{P}^3(\mathbb{C})$ with an invariant plane

论文作者

Lequen, Félix

论文摘要

我们证明了$ \ mathbb {p}^3(\ Mathbb {c})$具有双曲线奇异性的奇异性植物的独特性遗体定理,并具有不变的平面,没有叶面循环,与DINH-SIBONY COMBONY CONCERNING ORGODITION的结果相比, $ \ mathbb {p}^2(\ mathbb {c})$带有不变行。该证明本质上是动力学的,并使用Nguyên的基本可整合性估计值调整了Deroin-Kleptsyn的工作。

We prove a unique ergodicity theorem for singular holomorphic foliations of $\mathbb{P}^3(\mathbb{C})$ with hyperbolic singularities and with an invariant plane with no foliation cycle, in analogy with a result of Dinh-Sibony concerning unique ergodicity for foliations of $\mathbb{P}^2(\mathbb{C})$ with an invariant line. The proof is dynamical in nature and adapts the work of Deroin-Kleptsyn to a singular context, using the fundamental integrability estimate of Nguyên.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源