论文标题
橄榄分支学习:一个空间空气地面集成网络的拓扑感知的联合学习框架
Olive Branch Learning: A Topology-Aware Federated Learning Framework for Space-Air-Ground Integrated Network
论文作者
论文摘要
Space-Air-Interground集成网络(Sagin)是下一代移动通信系统的关键技术之一,可以促进全世界用户的数据传输,尤其是在某些偏远地区,这些领域由远程事物Internet(IORT)设备(IORT)设备收集大量信息,以支持各种数据驱动的人工智能(AI)服务。但是,在萨金(Sagin)的协助下,集中培训AI模型面临高度约束的网络拓扑,效率低下的数据传输和隐私问题的挑战。为了应对这些挑战,我们首先提出了一个新颖的拓扑意识到的联邦学习框架,即橄榄分支学习(OBL)。具体而言,地面层中的IORT设备利用其私人数据在本地进行模型培训,而空气层中的空气节点和空间层中的环形结构的低地球轨道(LEO)卫星星座负责模型聚集(同步),以进一步提高态度和不合时宜的沟通效率,并有效地延伸效率,并有效地构成了空间的纽约,并逐渐脱颖而出。算法是通过将空调的数据类分布以及其地理位置考虑在内的。此外,我们扩展了OBL框架和CNASA算法以适应更复杂的多轨卫星网络。我们分析了OBL框架的融合,并得出结论,CNASA算法有助于全球模型的快速收敛。基于现实数据集的广泛实验证实了我们的算法优于基准策略。
The space-air-ground integrated network (SAGIN), one of the key technologies for next-generation mobile communication systems, can facilitate data transmission for users all over the world, especially in some remote areas where vast amounts of informative data are collected by Internet of remote things (IoRT) devices to support various data-driven artificial intelligence (AI) services. However, training AI models centrally with the assistance of SAGIN faces the challenges of highly constrained network topology, inefficient data transmission, and privacy issues. To tackle these challenges, we first propose a novel topology-aware federated learning framework for the SAGIN, namely Olive Branch Learning (OBL). Specifically, the IoRT devices in the ground layer leverage their private data to perform model training locally, while the air nodes in the air layer and the ring-structured low earth orbit (LEO) satellite constellation in the space layer are in charge of model aggregation (synchronization) at different scales.To further enhance communication efficiency and inference performance of OBL, an efficient Communication and Non-IID-aware Air node-Satellite Assignment (CNASA) algorithm is designed by taking the data class distribution of the air nodes as well as their geographic locations into account. Furthermore, we extend our OBL framework and CNASA algorithm to adapt to more complex multi-orbit satellite networks. We analyze the convergence of our OBL framework and conclude that the CNASA algorithm contributes to the fast convergence of the global model. Extensive experiments based on realistic datasets corroborate the superior performance of our algorithm over the benchmark policies.