论文标题
使用哈米尔顿港神经网络对动态系统模型的组成学习
Compositional Learning of Dynamical System Models Using Port-Hamiltonian Neural Networks
论文作者
论文摘要
许多动态系统 - 从机器人与周围环境相互作用到大型多物理系统 - 都涉及许多相互作用的子系统。为了从数据学习此类系统的复合模型的目的,我们提出i)组成神经网络的框架,ii)训练这些模型的算法,ii)一种构成学习模型的方法,iv)构成所产生复合模型的误差的理论结果,v)一种学习组成本身的方法,何时何时知道该组合物本身,何时未知。最终结果是一种模块化学习方法:神经网络子模型是根据相对简单的子系统生成的轨迹数据进行培训的,然后预测更复杂的复合系统的动态,而无需复合系统本身生成的其他数据。我们通过代表感兴趣的系统及其每个子系统作为哈米尔顿港神经网络(PHNN)来实现这种组成,这是一类使用哈米尔顿港系统配方作为感应性偏见的神经普通微分方程。我们通过使用系统的物理信息互连结构来构成PHNN的集合,该结构可能是先验的,或者本身可以从数据中学到。我们通过涉及相互作用的弹簧质量抑制系统的数值示例来证明所提出的框架的新功能。这些系统的模型(包括非线性能量耗散和控制输入)是独立学习的。与从头开始训练新模型所需的培训数据相比,使用大量训练数据来学习准确的构图。最后,我们观察到,复合Phnns享有诸如Cyclo-Passivity之类的港口 - 港口系统的特性,例如Cyclo-Passivity - 一种对控制目的有用的属性。
Many dynamical systems -- from robots interacting with their surroundings to large-scale multiphysics systems -- involve a number of interacting subsystems. Toward the objective of learning composite models of such systems from data, we present i) a framework for compositional neural networks, ii) algorithms to train these models, iii) a method to compose the learned models, iv) theoretical results that bound the error of the resulting composite models, and v) a method to learn the composition itself, when it is not known a priori. The end result is a modular approach to learning: neural network submodels are trained on trajectory data generated by relatively simple subsystems, and the dynamics of more complex composite systems are then predicted without requiring additional data generated by the composite systems themselves. We achieve this compositionality by representing the system of interest, as well as each of its subsystems, as a port-Hamiltonian neural network (PHNN) -- a class of neural ordinary differential equations that uses the port-Hamiltonian systems formulation as inductive bias. We compose collections of PHNNs by using the system's physics-informed interconnection structure, which may be known a priori, or may itself be learned from data. We demonstrate the novel capabilities of the proposed framework through numerical examples involving interacting spring-mass-damper systems. Models of these systems, which include nonlinear energy dissipation and control inputs, are learned independently. Accurate compositions are learned using an amount of training data that is negligible in comparison with that required to train a new model from scratch. Finally, we observe that the composite PHNNs enjoy properties of port-Hamiltonian systems, such as cyclo-passivity -- a property that is useful for control purposes.