论文标题
低架空魔术状态准备的易于故障耐受性后选择
Fault-tolerant Post-Selection for Low Overhead Magic State Preparation
论文作者
论文摘要
我们使用基于可见的综合征和擦除信息的软信息指标引入了易耐故障代码和通道的易耐故障后选择后(FTP)(FTPS)的框架。我们介绍了几个指标,用于对综合症和擦除的排名进行排名。特别是,我们将\ emph {逻辑差距}(及其变体)作为强大的软信息公制,用于预测基于拓扑错误校正代码的逻辑误差率。逻辑差距大致是不等逻辑校正之间的无符号重量差,并且适用于任何定制的噪声模型或解码器。我们部署此框架来准备高质量的表面代码魔术状态,在独立且分布的模型(\ emph {i.i.d。})的模型下,Pauli和擦除错误。基于逻辑差距的选择后策略可以抑制魔术状态准备通道的编码错误率,即低开销的物理错误率级别。例如,当以$ 60 \%$运营的相应表面代码的大容量阈值时,可以将编码错误率的总体降低降低$ 15 $是可以实现的,而相对间接费用为$ {<2} $(约为$ {<2} $)(大约比简单综合综合征规则的$ 23 $乘以$ 23 $倍)。我们分析了一种示意性缓冲架构,用于在魔术状态蒸馏的背景下对魔术状态工厂实施后选择规则。 FTPS框架可用于减轻更通用的耐故障逻辑通道中的错误。
We introduce a framework for fault-tolerant post-selection (FTPS) of fault-tolerant codes and channels -- such as those based on surface-codes -- using soft-information metrics based on visible syndrome and erasure information. We introduce several metrics for ranking configurations of syndromes and erasures. In particular, we introduce the \emph{logical gap} (and variants thereof) as a powerful soft-information metric for predicting logical error rates of fault-tolerant channels based on topological error-correcting codes. The logical gap is roughly the unsigned weight difference between inequivalent logical corrections and is adaptable to any tailored noise model or decoder. We deploy this framework to prepare high-quality surface code magic states with low overhead under a model of independent and identically distributed (\emph{i.i.d.}) Pauli and erasure errors. Post-selection strategies based on the logical gap can suppress the encoding error rate of a magic state preparation channel to the level of the physical error rate with low overhead. For example, when operating at $60\%$ the bulk threshold of the corresponding surface code, an overall reduction of the encoding error rate by a factor of $15$ is achievable with a relative overhead factor of ${< 2}$ (approximately $23$ times less than that of simple syndrome-counting rules). We analyze a schematic buffer architecture for implementing post-selection rules on magic state factories in the context of magic state distillation. The FTPS framework can be utilized for mitigating errors in more general fault-tolerant logical channels.