论文标题

内核和操作员学习方法的均质均质化方法,通过自洽聚类分析

An Introduction to Kernel and Operator Learning Methods for Homogenization by Self-consistent Clustering Analysis

论文作者

Huang, Owen, Saha, Sourav, Guo, Jiachen, Liu, Wing Kam

论文摘要

操作员学习理论的最新进展改善了我们对无限维空间之间学习图的知识。但是,对于大规模的工程问题,例如机械性能的并发多尺度模拟,当前操作员学习方法的培训成本非常高。本文对操作员学习范式的数学基础进行了详尽的分析,并提出了一种映射功能空间之间的内核学习方法。我们首先提供了现代内核和操作员学习理论的调查,并讨论了最新结果和开放问题。从那里开始,本文提出了一种算法,以分析如何分析操作员学习的R上的分段常数功能。这意味着神经操作员在聚类功能上成功的潜在可行性。最后,考虑了基于机械响应的K-均值群集结构域,并解决了用于微机械均质化的Lippmann-Schwinger方程。本文简要讨论了以前的内核学习方法的数学以及这些方法的一些初步结果。所提出的内核操作员学习方法使用图内核网络为多尺度均质化提供了一种机械降低的订购方法。

Recent advances in operator learning theory have improved our knowledge about learning maps between infinite dimensional spaces. However, for large-scale engineering problems such as concurrent multiscale simulation for mechanical properties, the training cost for the current operator learning methods is very high. The article presents a thorough analysis on the mathematical underpinnings of the operator learning paradigm and proposes a kernel learning method that maps between function spaces. We first provide a survey of modern kernel and operator learning theory, as well as discuss recent results and open problems. From there, the article presents an algorithm to how we can analytically approximate the piecewise constant functions on R for operator learning. This implies the potential feasibility of success of neural operators on clustered functions. Finally, a k-means clustered domain on the basis of a mechanistic response is considered and the Lippmann-Schwinger equation for micro-mechanical homogenization is solved. The article briefly discusses the mathematics of previous kernel learning methods and some preliminary results with those methods. The proposed kernel operator learning method uses graph kernel networks to come up with a mechanistic reduced order method for multiscale homogenization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源