论文标题

康威理性缠结和汤普森集团

Conway Rational Tangles and the Thompson Group

论文作者

Grymski, Ariana, Peters, Emily

论文摘要

琼斯(Jones)从汤普森(Thompson)的集团$ f $到打结有一张地图,由琼斯定义和研究。琼斯证明了这张地图的图像中的每个结 - 也就是说,每个结都可以看作是汤普森组元素的“结闭合”。我们解决了从方法论上找到汤普森组元素以通过康威理性缠结镜头产生特定结或链接的问题。我们能够提供构造任何产品或简单缠结串联的方法,我们希望这些是针对施工问题采用更绞ice的理论方法的种子。

There is a map, defined and studied by Jones, from Thompson's group $F$ to knots. Jones proved that every knot is in the image of this map -- that is, that every knot can be seen as the "knot closure" of a Thompson group element. We approach the question of methodologically finding Thompson group elements to generate a particular knot or link through the lens of Conway's rational tangles. We are able to give methods to construct any product or concatenation of simple tangles, and we hope these are seeds for a more skein-theoretic approach to the construction question.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源