论文标题
$ 3N+3^K $:Collatz猜想的新观点
$3n+3^k$: New Perspective on Collatz Conjecture
论文作者
论文摘要
Collatz的猜想被推广到$ 3N+3^k $($ k \ in N $)。照常运行,每个序列似乎都达到$ 3^k $,最终以$ 3^k,4.3^k,2.3^k,3^k $。通常以$ k = 0 $回收了通常的$ 3N+1 $猜想。对于$ k> 0 $,我们注意到了一个周期3的序列,即$ 3^{k-1},2.3^k,3^k $,以及周期$ 4.3^k,2.3^k,2.3^k,3^k $,在$ 3N+1(k = 0)$序列中遇到的$ 3N+1(k = 0)$。 $ 3N+3^k $猜想的术语公式已得出,因此总停止时间。
Collatz conjecture is generalized to $3n+3^k$ ($k\in N$). Operating as usual, every sequence seems to reach $3^k$ and end up in the loop $3^k, 4.3^k, 2.3^k,3^k$. The usual $3n+1$ conjecture is recovered for $k=0$. For $k>0$, we noticed the existence of a sequence of period 3, namely, $3^{k-1}, 2.3^k, 3^k$, alongside the cycle $4.3^k, 2.3^k,3^k$ encountered in the $3n+1 (k=0)$ sequence. A term formula of the $3n+3^k$ conjecture has been derived, and hence the total stopping time.