论文标题
tau方法的角案例:对称地施加了超管的边界条件
Corner cases of the tau method: symmetrically imposing boundary conditions on hypercubes
论文作者
论文摘要
多项式光谱方法可为具有一个有界维度的PDE的宽范围生成快速,准确和柔性的求解器,其中一般边界条件的结合已得到充分了解。但是,由于在共享边缘和角落施加边界条件的困难,因此对具有多个有界维度的域的扩展自动化是具有挑战性的。过去的工作包括各种解决方法,例如在共享边缘的各向异性包含部分边界数据或仅适用于特定边界条件的方法。在这里,我们提出了一个通用系统,用于在高管上施加椭圆方程的边界条件。我们采用了一种基于广义tau方法的方法,该方法允许许多不同光谱方案为各种边界条件。广义tau方法具有明显的优势,即指定的多项式残差决定了确切的代数解。之后,任何稳定的数值方案都会找到相同的结果。因此,我们可以在TAU框架内与传统搭配和Galerkin方法进行一对一的比较。作为必不可少的要求,我们除了批量PDE外,还为边界条件添加了特定的tau校正,该批量PDE在共享子图上产生了一组唯一的兼容边界数据。我们的方法与一般边界条件合作,这些条件在相交的子图上通勤,包括Dirichlet,Neumann,Robin,以及所有边界上这些组合的任何组合。边界TAU校正可以进行高核对称的对称,并易于合并到现有的求解器中。我们在两个维度和三个维度上明确介绍了泊松方程的方法,并在任何维度上描述了其扩展到任意椭圆方程(例如Biharmonic)的扩展。
Polynomial spectral methods produce fast, accurate, and flexible solvers for broad ranges of PDEs with one bounded dimension, where the incorporation of general boundary conditions is well understood. However, automating extensions to domains with multiple bounded dimensions is challenging because of difficulties in imposing boundary conditions at shared edges and corners. Past work has included various workarounds, such as the anisotropic inclusion of partial boundary data at shared edges or approaches that only work for specific boundary conditions. Here we present a general system for imposing boundary conditions for elliptic equations on hypercubes. We take an approach based on the generalized tau method, which allows for a wide range of boundary conditions for many different spectral schemes. The generalized tau method has the distinct advantage that the specified polynomial residual determines the exact algebraic solution; afterwards, any stable numerical scheme will find the same result. We can, therefore, provide one-to-one comparisons to traditional collocation and Galerkin methods within the tau framework. As an essential requirement, we add specific tau corrections to the boundary conditions, in addition to the bulk PDE, which produce a unique set of compatible boundary data at shared subsurfaces. Our approach works with general boundary conditions that commute on intersecting subsurfaces, including Dirichlet, Neumann, Robin, and any combination of these on all boundaries. The boundary tau corrections can be made hyperoctahedrally symmetric and easily incorporated into existing solvers. We present the method explicitly for the Poisson equation in two and three dimensions and describe its extension to arbitrary elliptic equations (e.g. biharmonic) in any dimension.