论文标题
大型振幅振荡剪切研究在临界状态下的胶体凝胶
Large Amplitude Oscillatory Shear Study of a Colloidal Gel at the Critical State
论文作者
论文摘要
我们使用较大的振幅振荡剪切(LAOS)流变研究了胶体分散液在临界凝胶状态下的非线性粘弹性行为。在临界点处的胶体凝胶会在不同频率下的应变振幅增加振荡剪切流。我们观察到,弹性和粘性模量的第一个谐波表现出单调的减小,因为材料经历了线性向非线性过渡。我们分析了整个过渡过程中的应力波形,并获得非线性模量和粘度作为频率和应变振幅的函数。非线性模量和粘度的分析表明,胶体分散体中的内部应变僵硬和内部剪切变薄。基于从非线性分析获得的见解,我们提出了在非线性区域发生的微结构变化的潜在情景。我们还使用可分离的K-BKZ组成方程开发了一个积分模型,该方程具有幂律弛豫模量和从实验获得的阻尼函数。在低应变振幅下,该模型与所有频率的实验数据进行了很好的比较。但是,需要使用光谱方法有效地推断出更强的阻尼函数,以在整个应变振幅范围内获得定量拟合和探索的频率。
We investigate the nonlinear viscoelastic behavior of a colloidal dispersion at the critical gel state using large amplitude oscillatory shear (LAOS) rheology. The colloidal gel at the critical point is subjected to oscillatory shear flow with increasing strain amplitude at different frequencies. We observe that the first harmonic of the elastic and viscous moduli exhibits a monotonic decrease as the material undergoes a linear to nonlinear transition. We analyze the stress waveform across this transition and obtain the nonlinear moduli and viscosity as a function of frequency and strain amplitude. The analysis of the nonlinear moduli and viscosities suggests intracycle strain stiffening and intracycle shear thinning in the colloidal dispersion. Based on the insights obtained from the nonlinear analysis, we propose a potential scenario of the microstructural changes occurring in the nonlinear region. We also develop an integral model using the time-strain separable K-BKZ constitutive equation with a power-law relaxation modulus and damping function obtained from experiments. At low strain amplitudes, this model compares well with experimental data at all frequencies. However, a stronger damping function, which can be efficiently inferred using a spectral method, is required to obtain quantitative fits across the entire range of strain amplitudes and the explored frequencies.