论文标题

范丹兹格问题,李阳财产和里曼假设的新解决方案

A new class of solutions to the van Dantzig problem, the Lee-Yang property, and the Riemann hypothesis

论文作者

Konstantopoulos, T., Patie, P., Sarkar, R.

论文摘要

本文的目的是对有趣的Van Dantzig问题进行深入分析,该分析功能的表征$ \ MATHCAL {F} $组成,该$ \ Mathcal {f} $通过映射$ v \ Mathcal {f}(f} f}(f}(t)= 1/\ Maths的作用,该功能仍然保持稳定。 $ t \ in \ mathbb {r} $。 %也是一个特征功能。我们首先要观察到著名的Lee-Yang财产,出现在统计力学和量子场理论中,而Riemann假设可以通过van Dantzig问题来表现出来,更具体地说,更具体地说,在集合$ \ Mathbb {d} _l} _l \ subset \ subset \ subset \ mathbb { Laguerre-Pólya班。在这些事实的激励下,我们通过识别集合$ \ mathbb {d} $和$ \ mathbb {d} _l $的几个非平凡闭合属性进行进行。这不仅重新审视了概率技术,还加深了对Pólya,de Bruijn,Lukacs,Newman,Newman,Newman和Newman和Wu等人进行的Laguerre-Pólya类中偶数功能的引人入胜的研究。我们继续提供一个属于集合$ \ mathbb {d} $的新功能的新类,但不一定是$ \ mathbb {d} _l $,在集合$ \ mathbb {d} _l $之外提供了第一个示例。该类是从第二作者引入的一些整个函数中得出的,该类别与连续负定函数的子集进行了两次培训,并包含了几个值得注意的广义超几何型函数。除了识别特征函数外,我们还设法表征了一对相应的van dantzig随机变量,揭示了其中一个是无限的分区。最后,我们调查了Riemann $ξ$函数属于此类的可能性。

The purpose of this paper is to carry out an in-depth analysis of the intriguing van Dantzig problem which consists on characterizing the set $\mathbb{D}$ of analytic characteristic functions $\mathcal{F}$ which remains stable by the action of the mapping $V\mathcal{F}(t)=1/\mathcal{F}(it)$, $t\in\mathbb{R}$. % is also a characteristic function. We start by observing that the celebrated Lee-Yang property, appearing in statistical mechanics and quantum field theory, and the Riemann hypothesis can be both rephrased in terms of the van Dantzig problem, and, more specifically, in terms of the set $\mathbb{D}_L \subset \mathbb{D}$ of real-valued characteristic functions that belong to the Laguerre-Pólya class. Motivated by these facts, we proceed by identifying several non-trivial closure properties of the set $\mathbb{D}$ and $\mathbb{D}_L$. This not only revisits but also, by means of probabilistic techniques, deepens the fascinating studies of the set of even characteristic functions in the Laguerre-Pólya class carried out by Pólya, de Bruijn, Lukacs, Newman and more recently by Newman and Wu, among others. We continue by providing a new class of entire functions that belong to the set $\mathbb{D}$ but not necessarily to $\mathbb{D}_L$, offering the first examples outside the set $\mathbb{D}_L$. This class, which is derived from some entire functions introduced by the second author, is in bijection with a subset of continuous negative-definite functions and includes several notable generalized hypergeometric-type functions. Besides identifying the characteristic functions, we also manage to characterize the pair of the corresponding van Dantzig random variables revealing that one of them is infinitely divisible. Finally, we investigate the possibility that the Riemann $ξ$ function belongs to this class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源