论文标题
费尔米金和玻色子代数以及相关狄拉克操作员的单一二重性
Unitary Howe dualities for fermionic and bosonic algebras and related Dirac operators
论文作者
论文摘要
在本文中,我们使用$ \ mathbb {r}^{2n} $上的规范复杂结构$ \ mathbb {j} $引入Symbletic Dirac Operator的转换。事实上,这些操作员可以被解释为狄拉克操作员在Hermitian歧管上的骨气类似物。此外,我们证明了这些符号DIRAC运算符的代数对Lie代数$ \ Mathfrak {su}(1,2)$是同构,它导致Howe Dual Pair Pair $(\ Mathsf {u}(U}(u}(n)(n),\ Mathfrak {su}(su}(1,1,2))$。
In this paper we use the canonical complex structure $\mathbb{J}$ on $\mathbb{R}^{2n}$ to introduce a twist of the symplectic Dirac operator. As a matter of fact, these operators can be interpreted as the bosonic analogues of the Dirac operators on a Hermitian manifold. Moreover, we prove that the algebra of these symplectic Dirac operators is isomorphic to the Lie algebra $\mathfrak{su}(1,2)$ which leads to the Howe dual pair $(\mathsf{U}(n),\mathfrak{su}(1,2))$.