论文标题
一个周期的空间和Coniveau过滤的空间
Space of one cycles and coniveau filtrations
论文作者
论文摘要
我们证明了一个结构性的结果,该结构结果是关于一个循环的一个循环,或作为H-sheaf的一个曲线上一个分离的合理连接品种或理性连接的纤维的空间。这有以下后果:证据表明,强孔维尔过滤与第3级同源性的Coniveau过滤一致,并且是对同源性一个循环的整体泰特猜想的结果。
We prove a structural result about the space of one cycles of a separably rationally connected variety or a separably rationally connected fibration over a curve, either as a topological group or as an h-sheaf. This has the following consequences: a proof that the strong coniveau filtration agrees with the coniveau filtration on degree 3 homology, and a result on the integral Tate conjecture for homologically trivial one cycles.