论文标题
重力崩溃到极端黑洞和黑洞热力学的第三定律
Gravitational collapse to extremal black holes and the third law of black hole thermodynamics
论文作者
论文摘要
我们构建了来自常规的,单端的渐近平坦库奇数据的黑洞形成的示例,用于球形对称性中的爱因斯坦 - 马克斯韦(Einstein-Maxwell)负责的标量场系统,在有限的沿事件视野沿有限的速度延长后,这与极端reissner-nordström完全相同。此外,在这些示例中,黑洞的明显范围与早期高级时期的Schwarzschild解决方案相吻合。特别是,我们的结果可以看作是“黑洞热力学第三定律”的确定性证明。 该结构的主要步骤是一个新颖的$ C^k $特征性粘合过程,该过程在Minkowski Space的光锥和Reissner-Nordström事件地平线之间进行了插值,并具有指定的质量比率$ e/m $。我们的设置灵感来自Aretakis-Czimek-Rodnianski在爱因斯坦真空方程的扰动特征胶合中的最新工作。但是,我们的构建从根本上是非扰动的,并且基于有限的标量场脉冲集合,该脉冲由Borsuk-ulam定理调节。
We construct examples of black hole formation from regular, one-ended asymptotically flat Cauchy data for the Einstein-Maxwell-charged scalar field system in spherical symmetry which are exactly isometric to extremal Reissner-Nordström after a finite advanced time along the event horizon. Moreover, in each of these examples the apparent horizon of the black hole coincides with that of a Schwarzschild solution at earlier advanced times. In particular, our result can be viewed as a definitive disproof of the "third law of black hole thermodynamics." The main step in the construction is a novel $C^k$ characteristic gluing procedure, which interpolates between a light cone in Minkowski space and a Reissner-Nordström event horizon with specified charge to mass ratio $e/M$. Our setup is inspired by the recent work of Aretakis-Czimek-Rodnianski on perturbative characteristic gluing for the Einstein vacuum equations. However, our construction is fundamentally nonperturbative and is based on a finite collection of scalar field pulses which are modulated by the Borsuk-Ulam theorem.