论文标题
部分可观测时空混沌系统的无模型预测
On Separation Between Learning and Control in Partially Observed Markov Decision Processes
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Cyber-physical systems (CPS) encounter a large volume of data which is added to the system gradually in real time and not altogether in advance. As the volume of data increases, the domain of the control strategies also increases, and thus it becomes challenging to search for an optimal strategy. Even if an optimal control strategy is found, implementing such strategies with increasing domains is burdensome. To derive an optimal control strategy in CPS, we typically assume an ideal model of the system. Such model-based control approaches cannot effectively facilitate optimal solutions with performance guarantees due to the discrepancy between the model and the actual CPS. Alternatively, traditional supervised learning approaches cannot always facilitate robust solutions using data derived offline. Similarly, applying reinforcement learning approaches directly to the actual CPS might impose significant implications on safety and robust operation of the system. The goal of this chapter is to provide a theoretical framework that aims at separating the control and learning tasks which allows us to combine offline model-based control with online learning approaches, and thus circumvent the challenges in deriving optimal control strategies for CPS.