论文标题
部分可观测时空混沌系统的无模型预测
A Faster, Lighter and Stronger Deep Learning-Based Approach for Place Recognition
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Visual Place Recognition is an essential component of systems for camera localization and loop closure detection, and it has attracted widespread interest in multiple domains such as computer vision, robotics and AR/VR. In this work, we propose a faster, lighter and stronger approach that can generate models with fewer parameters and can spend less time in the inference stage. We designed RepVGG-lite as the backbone network in our architecture, it is more discriminative than other general networks in the Place Recognition task. RepVGG-lite has more speed advantages while achieving higher performance. We extract only one scale patch-level descriptors from global descriptors in the feature extraction stage. Then we design a trainable feature matcher to exploit both spatial relationships of the features and their visual appearance, which is based on the attention mechanism. Comprehensive experiments on challenging benchmark datasets demonstrate the proposed method outperforming recent other state-of-the-art learned approaches, and achieving even higher inference speed. Our system has 14 times less params than Patch-NetVLAD, 6.8 times lower theoretical FLOPs, and run faster 21 and 33 times in feature extraction and feature matching. Moreover, the performance of our approach is 0.5\% better than Patch-NetVLAD in Recall@1. We used subsets of Mapillary Street Level Sequences dataset to conduct experiments for all other challenging conditions.