论文标题
自相似于能量超临界半线性波方程
Self-similar blow up for energy supercritical semilinear wave equation
论文作者
论文摘要
我们分析了能量超临界半线性波方程$$φ_{tt}-Δφ-|φ|^{p-1}φ= 0 $$ in $ \ Mathbb r^d $ space。我们首先在适当的参数方面证明了一个可数的自我相似概况的家族,该家族从孤子解决方案中分为分叉。然后,我们通过适应ARXIV的功能设置:1912.11005来证明这些概况的非径向有限的编构稳定性。
We analyse the energy supercritical semilinear wave equation $$Φ_{tt}-ΔΦ-|Φ|^{p-1}Φ=0$$ in $\mathbb R^d$ space. We first prove in a suitable regime of parameters the existence of a countable family of self similar profiles which bifurcate from the soliton solution. We then prove the non radial finite codimensional stability of these profiles by adapting the functional setting of arXiv:1912.11005.