论文标题
在近代领先的功率下的横向摩托明依赖性分解
Transverse-momentum-dependent factorization at next-to-leading power
论文作者
论文摘要
我们研究了横向动量依赖性分解和在Drell-Yan和半包含的深度非弹性散射中的子领导能力下重新召开。在这些过程中,对横截面的子领导功率贡献作为对Leptonic张量的运动功率校正,以及对Hadronic张量的运动学,内在和动态亚领域的贡献。通过始终如一地处理相互作用的功率计数,我们证明了重新归一化组的一致性。我们在一个循环下计算运动学和内在子领导相关函数的异常尺寸,并发现进化方程会产生异常的尺寸矩阵,这些矩阵将引导和子领先的功率分布函数混合在一起。此外,我们计算与这些贡献相关的硬功能和软功能。我们发现,这些艰苦和软的贡献与领先力量的贡献不同。最后,我们计算动态子领导分布的速度异常维度,并发现它与领先功率异常尺寸相同。然后,我们评论与此贡献相关的软功能的影响。使用这些信息,我们在单环级别的这些过程中建立了分解形式主义。
We study transverse momentum dependent factorization and resummation at sub-leading power in Drell-Yan and semi-inclusive deep inelastic scattering. In these processes the sub-leading power contributions to the cross section enter as a kinematic power correction to the leptonic tensor, and the kinematic, intrinsic, and dynamic sub-leading contributions to the hadronic tensor. By consistently treating the power counting of the interactions, we demonstrate renormalization group consistency. We calculate the anomalous dimensions of the kinematic and intrinsic sub-leading correlation functions at one loop and find that the evolution equations give rise to anomalous dimension matrices which mix leading and sub-leading power distribution functions. Additionally we calculate the hard and soft functions associated with each of these contributions. We find that these hard and soft contributions differ from those at the leading power. Finally, we calculate the rapidity anomalous dimension for the dynamic sub-leading distributions and find that it is the same as the leading power anomalous dimension. We then comment on the implications for the soft function associated with this contribution. Using this information, we establish the factorization formalism at sub-leading power for these processes at the one-loop level.