论文标题

Prym-Narasimhan-Ramanan主要捆绑点的构造

A Prym-Narasimhan-Ramanan construction of principal bundle fixed points

论文作者

Barajas, G., García-Prada, O.

论文摘要

让$ x $成为紧凑的Riemann Surface,而$ G $是一个连接的还原复合物lie Group,中央$ z $。考虑$ x $上的polystable主塑形$ g $捆的模量$ m(x,g)$。 $ m(x,z,z)$ h^1(x,z)$ h^1(x,z)$ $ z $ - 捆绑$ z $捆绑在$ m(x,g)上的$ x $(x,g)$,由乘法$ z \ times g \ tog。$ g。让$γ$是$ h^1(x,z)$的有限亚组。我们的目标是在$γ$的动作下找到一个Prym-Narasimhan-Ramanan型结构,以描述$ m(x,g)$的固定点。这种结构中的主要成分是在Arxiv中开发的$ x $ of twisted eproivariant捆绑包的理论:2208.0902(2)。

Let $X$ be a compact Riemann surface and $G$ be a connected reductive complex Lie group with centre $Z$. Consider the moduli space $M(X,G)$ of polystable principal holomorphic $G$-bundles on $X$. There is an action of the group $H^1(X,Z)$ of isomorphism classes of $Z$-bundles over $X$ on $M(X,G)$ induced by the multiplication $Z\times G\to G.$ Let $Γ$ be a finite subgroup of $H^1(X,Z)$. Our goal is to find a Prym--Narasimhan--Ramanan-type construction to describe the fixed points of $M(X,G)$ under the action of $Γ$. A main ingredient in this construction is the theory of twisted equivariant bundles on an étale cover of $X$ developed in arXiv:2208.0902(2).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源