论文标题
高级方法的高度冲击和真实化学的高级方法
High-Order Methods for Hypersonic Flows with Strong Shocks and Real Chemistry
论文作者
论文摘要
我们比较了包括光谱差(SD),通量重建(FR),熵稳定的不连续的Galerkin频谱元素方法(ES-DGSEM),模态不连续的Galerkin方法和WENO的高阶方法,以选择最佳的候选者,以模拟强烈的强烈冲击波的特征性候选者。我们考虑了几个基准,包括LeBlanc和修改后的冲击密度相互作用问题,这些问题需要稳定的稳定和具有阳性性的特性才能成功实现。我们还使用简化的化学作用进行了三种草皮问题的模拟,并在Euler方程中引入了化学反应源术语。 ES-DGSEM方案表现出最高的稳定性,可忽略不计的数值振荡,并且在用强冲击波解决反应性流程方面需要最少的计算努力。因此,我们通过为五物种气体模型得出新的两点熵保守通量,将ES-DGSEM扩展到高音欧拉方程。通过将高阶熵保守通量与使用HLLC Riemann求解器构建的低阶量化体积通量混合,捕获强冲击波的稳定化发生。使用非平衡化学SOD问题验证了Hypersonic Euler求解器。为此,我们采用突变++文库来计算反应源项,热力学特性和运输系数。我们还研究了实际的化学与理想化学的影响,结果表明,理想的化学假设在高温下失败,因此必须采用实际的化学以进行准确的预测。最后,我们考虑一个粘性的高超音速流问题,以验证由突变++文库确定的转运系数和反应源项。
We compare high-order methods including spectral difference (SD), flux reconstruction (FR), the entropy-stable discontinuous Galerkin spectral element method (ES-DGSEM), modal discontinuous Galerkin methods, and WENO to select the best candidate to simulate strong shock waves characteristic of hypersonic flows. We consider several benchmarks, including the Leblanc and modified shock-density wave interaction problems that require robust stabilization and positivity-preserving properties for a successful flow realization. We also perform simulations of the three-species Sod problem with simplified chemistry with the chemical reaction source terms introduced in the Euler equations. The ES-DGSEM scheme exhibits the highest stability, negligible numerical oscillations, and requires the least computational effort in resolving reactive flow regimes with strong shock waves. Therefore, we extend the ES-DGSEM to hypersonic Euler equations by deriving a new set of two-point entropy conservative fluxes for a five-species gas model. Stabilization for capturing strong shock waves occurs by blending high-order entropy conservative fluxes with low-order finite volume fluxes constructed using the HLLC Riemann solver. The hypersonic Euler solver is verified using the non-equilibrium chemistry Sod problem. To this end, we adopt the Mutation++ library to compute the reaction source terms, thermodynamic properties, and transport coefficients. We also investigate the effect of real chemistry versus ideal chemistry, and the results demonstrate that the ideal chemistry assumption fails at high temperatures, hence real chemistry must be employed for accurate predictions. Finally, we consider a viscous hypersonic flow problem to verify the transport coefficients and reaction source terms determined by the Mutation++ library.