论文标题

二维不可压缩的极性流体中有限尺寸的缩放和双横断性临界行为

Finite-size scaling and double-crossover critical behavior in two-dimensional incompressible polar active fluids

论文作者

Qi, Wanming, Tang, Lei-Han, Chaté, Hugues

论文摘要

我们通过对不可压缩的碳音-TU(ITT)磁场理论的广泛数值模拟和详细的有限尺寸缩放(FSS)分析的广泛数值模拟,研究具有对齐相互作用的二维不可压缩粒子系统中的顺序转变。过渡在探索的参数空间中看起来是连续的,但是有效的敏感性指数$γ/ν$和动态指数$ z $在系统大小上以双重交叉的形式表现出强,非单调的变化。在小尺寸下,观察到均匀$ k = 0 $模式的平均场指数,而空间波动遵循高斯统计。第一个跨界标志着从该制度到一个型号的偏离,在该方案中,系统的行为与具有远程偶极相互作用和涡流激发的平衡XY模型一样。在较大尺寸的情况下,缩放缩放偏离了偶极XY行为,并观察到第二个跨界的偏差,以便大概是渐近ITT普遍性类别。在这种跨界到真正的平衡行为时,对流会加快波动的运输,抑制大规模波动并有助于稳定远距离秩序。我们获得了ITT类的通用粘合剂累积和指数的估计和界限。我们提出了一种先前忽略的流体动力学理论,该理论定量描述了第一个缩放制度。通过提供相对全面的数值图片和新颖的分析描述,我们的结果有助于阐明关键活性物质系统中的有限尺寸效应,这被认为与理解实际羊群或群中的无尺度行为有关。

We study the order-disorder transition in two-dimensional incompressible systems of motile particles with alignment interactions through extensive numerical simulations of the incompressible Toner-Tu (ITT) field theory and a detailed finite-size scaling (FSS) analysis. The transition looks continuous in the explored parameter space, but the effective susceptibility exponent $γ/ν$ and the dynamic exponent $z$ exhibit a strong, non-monotonic variation on the system size in the form of double crossovers. At small sizes, mean-field exponents are observed for the homogeneous $k=0$ mode whereas spatial fluctuations follow Gaussian statistics. A first crossover marks the departure from this regime to one where the system behaves like the equilibrium XY model with long-ranged dipolar interaction and vortex excitations. At larger sizes, scaling deviates from the dipolar XY behavior and a second crossover is observed, to presumably the asymptotic ITT universality class. At this crossover to genuinely off-equilibrium behavior, advection comes in to expedite transport of fluctuations, suppress large-scale fluctuations and help stabilize long-range order. We obtain estimates and bounds of the universal Binder cumulant and exponents of the ITT class. We propose a reduced hydrodynamic theory, previously overlooked, that quantitatively describes the first scaling regime. By providing a relatively comprehensive numerical picture and a novel analytical description, our results help elucidate finite-size effects in critical active matter systems, which have been argued to be relevant for understanding scale-free behavior in real flocks or swarms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源