论文标题

有效的繁殖编号:凸,凹和不变性

The effective reproduction number: convexity, concavity and invariance

论文作者

Delmas, Jean-François, Dronnier, Dylan, Zitt, Pierre-André

论文摘要

我们研究了\ emph {有效繁殖数}的各种特性的异质种群中最佳疫苗分配策略的问题。在最简单的情况下,给定固定的非负矩阵$ k $,这与矩阵product $ \ mathrm {diag}(η)k $的光谱半径$ r_e(η)$的研究相对应矩阵$ k $和向量$η$可以解释为下一代操作员和疫苗接种策略。这可以在无限尺寸的情况下推广,在该情况下,矩阵$ k $被正面的紧凑型操作员取代,该操作员由非负函数$η$组成。 我们为函数$ r_e $提供了足够的条件,即凸面或凹面。最终,我们在模型上提供等价属性,以确保函数$ r_e $没有变化。

Motivated by the question of optimal vaccine allocation strategies in heterogeneous population for epidemic models, we study various properties of the \emph{effective reproduction number}. In the simplest case, given a fixed, non-negative matrix $K$, this corresponds mathematically to the study of the spectral radius $R_e(η)$ of the matrix product $\mathrm{Diag}(η)K$, as a function of $η\in\mathbb{R}_+^n$. The matrix $K$ and the vector $η$ can be interpreted as a next-generation operator and a vaccination strategy. This can be generalized in an infinite dimensional case where the matrix $K$ is replaced by a positive integral compact operator, which is composed with a multiplication by a non-negative function $η$. We give sufficient conditions for the function $R_e$ to be convex or a concave. Eventually, we provide equivalence properties on models which ensure that the function $R_e$ is unchanged.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源