论文标题
关于复杂流中多体流体动力问题的接触和碰撞方法的综述
A Review on Contact and Collision Methods for Multi-body Hydrodynamic problems in Complex Flows
论文作者
论文摘要
载有颗粒流量的建模和直接数值模拟在从大气中的污染散布到燃烧过程中的流化,到喷雾药物中的气溶胶沉积以及其他许多其他范围内,在科学和工程中具有巨大的科学和工程应用。由于其强烈的非线性和多尺度,上述复杂现象仍然对大多数计算方法提出了非常陡峭的挑战。在这篇综述中,我们提供了多体流体动力(MBH)问题的全面覆盖,这些问题重点是复杂的流体系统中的颗粒悬浮液,这些悬浮液已使用混合欧拉 - 拉格朗日颗粒流量模型进行了模拟。在这些混合模型中,沉浸式边界晶体玻尔兹曼方法(IB-LBM)为MBH模拟中的固体流体水动力相互作用提供了数学上简单且计算上的效率算法。本文详细介绍了近距离粒子间相互作用和碰撞方法的各种“简单至复杂”表示的数学框架,适用性以及局限性,包括短距离粒子间和粒子壁相互作用,弹簧和润滑力,弹簧和润滑力,正常和倾斜的碰撞模型,以及在近距离模型上,以及在近距离模型中,以及柔软的粒子模型,并遵循变形的粒子模型,并将柔软的粒子模型与柔和的粒子相吻合,并将柔软的粒子模型与柔软的粒子相吻合,并构成了柔软的胶合物,并将柔软的粒子模型与柔软的粒子相吻合,并构成了柔软的粒子模型。不同几何形状和大小在各种流体系统中的非均匀颗粒的数量。
Modeling and direct numerical simulation of particle-laden flows have a tremendous variety of applications in science and engineering across a vast spectrum of scales from pollution dispersion in the atmosphere, to fluidization in the combustion process, to aerosol deposition in spray medication, along with many others. Due to their strongly nonlinear and multiscale nature, the above complex phenomena still raise a very steep challenge to the most computational methods. In this review, we provide comprehensive coverage of multibody hydrodynamic (MBH) problems focusing on particulate suspensions in complex fluidic systems that have been simulated using hybrid Eulerian-Lagrangian particulate flow models. Among these hybrid models, the Immersed Boundary-Lattice Boltzmann Method (IB-LBM) provides mathematically simple and computationally-efficient algorithms for solid-fluid hydrodynamic interactions in MBH simulations. This paper elaborates on the mathematical framework, applicability, and limitations of various 'simple to complex' representations of close-contact interparticle interactions and collision methods, including short-range inter-particle and particle-wall steric interactions, spring and lubrication forces, normal and oblique collisions, and mesoscale molecular models for deformable particle collisions based on hard-sphere and soft-sphere models in MBH models to simulate settling or flow of nonuniform particles of different geometric shapes and sizes in diverse fluidic systems.