论文标题
短时间磁化的惯性动力学和平衡相关功能
Inertial dynamics and equilibrium correlation functions of magnetization at short times
论文作者
论文摘要
在惯性磁化动力学的情况下,开发和采用了矩的方法来分析铁电磁纳米颗粒磁化的平衡相关函数。该方法基于相关函数的泰勒级数扩展和扩展系数的估计。该方法大大降低了平衡相关函数分析的复杂性。分析表达式是针对具有纵向磁场的铁磁纳米颗粒的单轴磁晶体晶体各向异性的纵向和横向相关函数的前三个系数的分析表达式。考虑了非常强大且可忽略的外部纵向场的限制案例。讨论了惯性磁化动力学的戈登总和规则。此外,我们表明有限的分析系列可以用作简单且令人满意的近似值,用于短时间相关函数的数值计算。
The method of moments is developed and employed to analyze the equilibrium correlation functions of the magnetization of ferromagnetic nanoparticles in the case of inertial magnetization dynamics. The method is based on the Taylor series expansion of the correlation functions and the estimation of the expansion coefficients. This method significantly reduces the complexity of analysis of equilibrium correlation functions. Analytical expressions are derived for the first three coefficients for the longitudinal and transverse correlation functions for the uniaxial magnetocrystalline anisotropy of ferromagnetic nanoparticles with a longitudinal magnetic field. The limiting cases of very strong and negligibly weak external longitudinal fields are considered. The Gordon sum rule for inertial magnetization dynamics is discussed. In addition, we show that finite analytic series can be used as a simple and satisfactory approximation for the numerical calculation of correlation functions at short times.